Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38535679

RESUMO

Biomimetic scaffolds imitate native tissue and can take a multidimensional form. They are biocompatible and can influence cellular metabolism, making them attractive bioengineering platforms. The use of biomimetic scaffolds adds complexity to traditional cell cultivation methods. The most commonly used technique involves cultivating cells on a flat surface in a two-dimensional format due to its simplicity. A three-dimensional (3D) format can provide a microenvironment for surrounding cells. There are two main techniques for obtaining 3D structures based on the presence of scaffolding. Scaffold-free techniques consist of spheroid technologies. Meanwhile, scaffold techniques contain organoids and all constructs that use various types of scaffolds, ranging from decellularized extracellular matrix (dECM) through hydrogels that are one of the most extensively studied forms of potential scaffolds for 3D culture up to 4D bioprinted biomaterials. 3D bioprinting is one of the most important techniques used to create biomimetic scaffolds. The versatility of this technique allows the use of many different types of inks, mainly hydrogels, as well as cells and inorganic substances. Increasing amounts of data provide evidence of vast potential of biomimetic scaffolds usage in tissue engineering and personalized medicine, with the main area of potential application being the regeneration of skin and musculoskeletal systems. Recent papers also indicate increasing amounts of in vivo tests of products based on biomimetic scaffolds, which further strengthen the importance of this branch of tissue engineering and emphasize the need for extensive research to provide safe for humansbiomimetic tissues and organs. In this review article, we provide a review of the recent advancements in the field of biomimetic scaffolds preceded by an overview of cell culture technologies that led to the development of biomimetic scaffold techniques as the most complex type of cell culture.

2.
Cells ; 13(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334666

RESUMO

A disturbance of the structure of the aortic wall results in the formation of aortic aneurysm, which is characterized by a significant bulge on the vessel surface that may have consequences, such as distention and finally rupture. Abdominal aortic aneurysm (AAA) is a major pathological condition because it affects approximately 8% of elderly men and 1.5% of elderly women. The pathogenesis of AAA involves multiple interlocking mechanisms, including inflammation, immune cell activation, protein degradation and cellular malalignments. The expression of inflammatory factors, such as cytokines and chemokines, induce the infiltration of inflammatory cells into the wall of the aorta, including macrophages, natural killer cells (NK cells) and T and B lymphocytes. Protein degradation occurs with a high expression not only of matrix metalloproteinases (MMPs) but also of neutrophil gelatinase-associated lipocalin (NGAL), interferon gamma (IFN-γ) and chymases. The loss of extracellular matrix (ECM) due to cell apoptosis and phenotype switching reduces tissue density and may contribute to AAA. It is important to consider the key mechanisms of initiating and promoting AAA to achieve better preventative and therapeutic outcomes.


Assuntos
Aneurisma da Aorta Abdominal , Masculino , Humanos , Feminino , Idoso , Aneurisma da Aorta Abdominal/metabolismo , Aorta/metabolismo , Citocinas/metabolismo , Fenótipo , Apoptose/genética
3.
Stem Cell Rev Rep ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38372877

RESUMO

Epithelial-mesenchymal transition (EMT) is a crucial process with significance in the metastasis of malignant tumors. It is through the acquisition of plasticity that cancer cells become more mobile and gain the ability to metastasize to other tissues. The mesenchymal-epithelial transition (MET) is the return to an epithelial state, which allows for the formation of secondary tumors. Both processes, EMT and MET, are regulated by different pathways and different mediators, which affects the sophistication of the overall tumorigenesis process. Not insignificant are also cancer stem cells and their participation in the angiogenesis, which occur very intensively within tumors. Difficulties in effectively treating cancer are primarily dependent on the potential of cancer cells to rapidly expand and occupy secondarily vital organs. Due to the ability of these cells to spread, the concept of the circulating tumor cell (CTC) has emerged. Interestingly, CTCs exhibit molecular diversity and stem-like and mesenchymal features, even when derived from primary tumor tissue from a single patient. While EMT is necessary for metastasis, MET is required for CTCs to establish a secondary site. A thorough understanding of the processes that govern the balance between EMT and MET in malignancy is crucial.

4.
BMC Cancer ; 24(1): 4, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166752

RESUMO

Long non-coding RNA (lncRNA) H19 has gained significant recognition as a pivotal contributor to the initiation and advancement of gynecologic cancers, encompassing ovarian, endometrial, cervical, and breast cancers. H19 exhibits a complex array of mechanisms, demonstrating dualistic effects on tumorigenesis as it can function as both an oncogene and a tumor suppressor, contingent upon the specific context and type of cancer being investigated. In ovarian cancer, H19 promotes tumor growth, metastasis, and chemoresistance through modulation of key signaling pathways and interaction with microRNAs. Conversely, in endometrial cancer, H19 acts as a tumor suppressor by inhibiting proliferation, inducing apoptosis, and regulating epithelial-mesenchymal transition. Additionally, H19 has been implicated in cervical and breast cancers, where it influences cell proliferation, invasion, and immune evasion. Moreover, H19 has potential as a diagnostic and prognostic biomarker for gynecologic cancers, with its expression levels correlating with clinical parameters and patient outcomes. Understanding the functional roles of H19 in gynecologic cancers is crucial for the development of targeted therapeutic strategies and personalized treatment approaches. Further investigation into the intricate molecular mechanisms underlying H19's involvement in gynecologic malignancies is warranted to fully unravel its therapeutic potential and clinical implications. This review aims to elucidate the functional roles of H19 in various gynecologic malignancies.


Assuntos
Neoplasias da Mama , Neoplasias dos Genitais Femininos , MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias dos Genitais Femininos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Transdução de Sinais
5.
Artigo em Inglês | MEDLINE | ID: mdl-38265390

RESUMO

Since the authors are not responding to the editor's requests to fulfill the editorial requirement, therefore, the article has been withdrawn from the website of the journal Current Stem Cell Research & Therapy.Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused.The Bentham editorial policy on article withdrawal can be found at https://benthamscience.com/pages/editorialpolicies-main BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.

6.
Mol Neurobiol ; 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38087169

RESUMO

Ischemic stroke (IS) stands as a prominent cause of mortality and long-term disability around the world. It arises primarily from a disruption in cerebral blood flow, inflicting severe neural injuries. Hence, there is a pressing need to comprehensively understand the intricate mechanisms underlying IS and identify novel therapeutic targets. Recently, long noncoding RNAs (lncRNAs) have emerged as a novel class of regulatory molecules with the potential to attenuate pathogenic mechanisms following IS. Among these lncRNAs, MALAT1 (metastasis-associated lung adenocarcinoma transcript 1) has been extensively studied due to its involvement in the pathophysiological processes of IS. In this review, we provide an in-depth analysis of the essential role of MALAT1 in the development and progression of both pathogenic and protective mechanisms following IS. These mechanisms include oxidative stress, neuroinflammation, cell death signaling, blood brain barrier dysfunction, and angiogenesis. Furthermore, we summarize the impact of MALAT1 on the susceptibility and severity of IS. This review highlights the potential risks associated with the therapeutic use of MALAT1 for IS, which are attributable to the stimulatory action of MALAT1 on ischemia/reperfusion injury. Ultimately, this review sheds light on the potential molecular mechanisms and associated signaling pathways underlying MALAT1 expression post-IS, with the aim of uncovering potential therapeutic targets.

7.
BMC Nephrol ; 24(1): 380, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38124072

RESUMO

Renal cell carcinoma (RCC), a prevalent form of renal malignancy, is distinguished by its proclivity for robust tumor proliferation and metastatic dissemination. Long non-coding RNAs (lncRNAs) have emerged as pivotal modulators of gene expression, exerting substantial influence over diverse biological processes, encompassing the intricate landscape of cancer development. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT-1), an exemplar among lncRNAs, has been discovered to assume functional responsibilities within the context of RCC. The conspicuous expression of MALAT-1 in RCC cells has been closely linked to the advancement of tumors and an unfavorable prognosis. Experimental evidence has demonstrated the pronounced ability of MALAT-1 to stimulate RCC cell proliferation, migration, and invasion, thereby underscoring its active participation in facilitating the metastatic cascade. Furthermore, MALAT-1 has been implicated in orchestrating angiogenesis, an indispensable process for tumor expansion and metastatic dissemination, through its regulatory influence on pro-angiogenic factor expression. MALAT-1 has also been linked to the evasion of immune surveillance in RCC, as it can regulate the expression of immune checkpoint molecules and modulate the tumor microenvironment. Hence, the potential utility of MALAT-1 as a diagnostic and prognostic biomarker in RCC emerges, warranting further investigation and validation of its clinical significance. This comprehensive review provides an overview of the diverse functional roles exhibited by MALAT-1 in RCC.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , RNA Longo não Codificante , Humanos , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/patologia , Proliferação de Células/genética , Prognóstico , Linhagem Celular Tumoral , Microambiente Tumoral/genética
8.
Cells ; 12(21)2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37947637

RESUMO

It is now widely recognized that mesenchymal stem cells (MSCs) possess the capacity to differentiate into a wide array of cell types. Numerous studies have identified the role of lncRNA in the regulation of MSC differentiation. It is important to elucidate the role and interplay of microRNAs (miRNAs) and long non-coding RNAs (lncRNAs) in the regulation of signalling pathways that govern MSC function. Furthermore, miRNAs and lncRNAs are important clinical for innovative strategies aimed at addressing a wide spectrum of existing and emerging disease. Hence it is important to consider their impact on MSC function and differentiation. Examining the data available in public databases, we have collected the literature containing the latest discoveries pertaining to human stem cells and their potential in both fundamental research and clinical applications. Furthermore, we have compiled completed clinical studies that revolve around the application of MSCs, shedding light on the opportunities presented by harnessing the regulatory potential of miRNAs and lncRNAs. This exploration of the therapeutic possibilities offered by miRNAs and lncRNAs within MSCs unveils exciting prospects for the development of precision therapies and personalized treatment approaches. Ultimately, these advancements promise to augment the efficacy of regenerative strategies and produce positive outcomes for patients. As research in this field continues to evolve, it is imperative to explore and exploit the vast potential of miRNAs and lncRNAs as therapeutic agents. The findings provide a solid basis for ongoing investigations, fuelling the quest to fully unlock the regenerative potential of MSCs.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , RNA Longo não Codificante , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo
9.
Mol Neurobiol ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932544

RESUMO

Ischemic stroke, which occurs due to the occlusion of cerebral arteries, is a common type of stroke. Recent research has highlighted the important role of long non-coding RNAs (lncRNAs) in the development of cerebrovascular diseases, specifically ischemic stroke. Understanding the functional roles of lncRNAs in ischemic stroke is crucial, given their potential contribution to the disease pathology. One noteworthy lncRNA is X-inactive specific transcript (XIST), which exhibits downregulation during the early stages of ischemic stroke and subsequent upregulation in later stages. XIST exert its influence on the development of ischemic stroke through interactions with multiple miRNAs and transcription factors. These interactions play a significant role in the pathogenesis of the condition. In this review, we have provided a comprehensive summary of the functional roles of XIST in ischemic stroke. By investigating the involvement of XIST in the disease process, we aim to enhance our understanding of the mechanisms underlying ischemic stroke and potentially identify novel therapeutic targets.

10.
J Cell Commun Signal ; 17(4): 1203-1217, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870615

RESUMO

Long non-coding RNAs (lncRNAs) are non-protein coding transcripts that are longer than 200 nucleotides in length. LncRNAs are implicated in gene expression at the transcriptional, translational, and epigenetic levels, and thereby impact different cellular processes including cell proliferation, migration, apoptosis, angiogenesis, and immune response. In recent years, numerous studies have demonstrated the significant contribution of lncRNAs to the pathogenesis and progression of various diseases, such as stroke, heart disease, and cancer. Further investigations have shown that lncRNAs have altered expression patterns in ocular tissues and cell lines during pathological conditions. The pathogenesis of various ocular diseases, including glaucoma, cataract, corneal diseases, proliferative vitreoretinopathy, diabetic retinopathy, and retinoblastoma, is influenced by the involvement of specific lncRNAs which play a critical role in the development and progression of these diseases. Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is a well-researched lncRNA in the context of ocular diseases, which has been shown to exert its biological effects through several signaling pathways and downstream targets. The present review provides a comprehensive summary of the molecular mechanisms underlying the biological functions and roles of MALAT1 in ocular diseases.

11.
Clin. transl. oncol. (Print) ; 25(10): 2812-2831, oct. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-225062

RESUMO

Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/β-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3β, TGF-β1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells (AU)


Assuntos
Humanos , Feminino , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Glicogênio Sintase Quinase 3 beta , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais/genética
12.
Front Nutr ; 10: 1225233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37743926

RESUMO

In vitro meat production presents a potential viable alternative for meat consumption, which could provide the consumer with a product indistinguishable from the original, with very similar nutritional and culinary values. Indeed, the alternative products currently accessible often lack comparable nutritional value or culinary attributes to their animal-derived counterparts. This creates challenges for their global acceptance, particularly in countries where meat consumption holds cultural significance. However, while cultured meat research has been progressing rapidly in recent years, some significant obstacles still need to be overcome before its possible commercialization. Hence, this review summarizes the most current knowledge regarding the history of cultured meat, the currently used cell sources and methods used for the purpose of in vitro meat production, with particular focus on the role of bioreactors, scaffolds and microcarriers in overcoming the current obstacles. The authors put the potential microcarrier and scaffold-based solutions in a context, discussing the ways in which they can impact the way forward for the technology, including the use of considering the potential practical and societal barriers to implementing it as a viable food source worldwide.

13.
Life Sci ; 332: 122126, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37769803

RESUMO

Small extracellular vesicles (sEVs) are a type of membranous vesicles that can be released by cells into the extracellular space. The relationship between sEVs and non-coding RNAs (ncRNAs) is highly intricate and interdependent. This symbiotic relationship plays a pivotal role in facilitating intercellular communication and holds profound implications for a myriad of biological processes. The concept of sEVs and their ncRNA cargo as a "Trojan Horse" highlights their remarkable capacity to traverse biological barriers and surreptitiously deliver their cargo to target cells, evading detection by the host-immune system. Accumulating evidence suggests that sEVs may be harnessed as carriers to ferry therapeutic ncRNAs capable of selectively silencing disease-driving genes, particularly in conditions such as cancer. This approach presents several advantages over conventional drug delivery methods, opening up new possibilities for targeted therapy and improved treatment outcomes. However, the utilization of sEVs and ncRNAs as therapeutic agents raises valid concerns regarding the possibility of unforeseen consequences and unintended impacts that may emerge from their application. It is important to consider the fundamental attributes of sEVs and ncRNAs, including by an in-depth analysis of the practical and clinical potentials of exosomes, serving as a representative model for sEVs encapsulating ncRNAs.

14.
Int J Fertil Steril ; 17(4): 218-225, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37577902

RESUMO

Recurrent pregnancy loss (RPL) or recurrent miscarriage is the failure of pregnancy before 20-24 weeks that influences around 2-5% of couples. Several genetic, immunological, environmental and physical factors may influence RPL. Although various traditional methods have been used to treat post-implantation failures, identifying the mechanisms underlying RPL may improve an effective treatment. Recent evidence suggested that gene expression alterations presented essential roles in the occurrence of RPL. It has been found that long non-coding RNAs (lncRNAs) play functional roles in pregnancy pathologies, such as recurrent miscarriage. lncRNAs can function as dynamic scaffolds, modulate chromatin function, guide and bind to microRNAs (miRNAs) or transcription factors. lncRNAs, by targeting various miRNAs and mRNAs, play essential roles in the progression or suppression of RPL. Therefore, targeting lncRNAs and their downstream targets might be a suitable strategy for diagnosis and treatment of RPL. In this review, we summarized emerging roles of several lncRNAs in stimulation or suppression of RPL.

15.
Clin. transl. oncol. (Print) ; 25(7): 2015-2042, jul. 2023. ilus
Artigo em Inglês | IBECS | ID: ibc-222375

RESUMO

Long non-coding RNAs (lncRNAs) are non-coding RNAs that contain more than 200 nucleotides but do not code for proteins. In tumorigenesis, lncRNAs can have both oncogenic and tumor-suppressive properties. X inactive-specific transcript (XIST) is a known lncRNA that has been implicated in X chromosome silencing in female cells. Dysregulation of XIST is associated with an increased risk of various cancers. Therefore, XIST can be a beneficial prognostic biomarker for human malignancies. In this review, we attempt to summarize the emerging roles of XIST in human cancers (AU)


Assuntos
Humanos , MicroRNAs/genética , Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Carcinogênese , RNA Mensageiro
16.
J Cell Commun Signal ; 17(3): 531-547, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37310654

RESUMO

Gynecologic cancers are a worldwide problem among women. Recently, molecular targeted therapy opened up an avenue for cancer diagnosis and treatment. Long non-coding RNAs (lncRNAs) are RNA molecules (> 200 nt) that are not translated into protein, and interact with DNA, RNA, and proteins. LncRNAs were found to play pivotal roles in cancer tumorigenesis and progression. Nuclear paraspeckle assembly transcript 1 (NEAT1) is a lncRNA that mediates cell proliferation, migration, and EMT in gynecologic cancers by targeting several miRNAs/mRNA axes. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of breast, ovarian, cervical, and endometrial cancers. In this narrative review, we summarized various NEAT1-related signaling pathways that are critical in gynecologic cancers. Long non-coding RNA (lncRNA) by targeting various signaling pathways involved in its target genes can regulate the occurrence of gynecologic cancers.

17.
Clin Transl Oncol ; 25(11): 3101-3121, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37039938

RESUMO

Circular RNAs (circRNAs) as small non-coding RNAs with cell, tissue, or organ-specific expression accomplish a broad array of functions in physiological and pathological processes such as cancer development. Angiogenesis, a complicated multistep process driving a formation of new blood vessels, speeds up tumor progression by supplying nutrients as well as energy. Abnormal expression of circRNAs reported to affect tumor development through impressing angiogenesis. Such impacts are introduced as constant with different tumorigenic features known as "hallmarks of cancer". In addition, deregulated circRNAs show possibilities to prognosis and diagnosis both in the prophecy of prognosis in malignancies and also their prejudice from healthy individuals. In the present review article, we have evaluated the angiogenic impacts and anti-angiogenic managements of circRNAs in human cancers.


Assuntos
Neoplasias , RNA Circular , Humanos , Neoplasias/genética , Neoplasias/diagnóstico , Prognóstico , Carcinogênese , Imunoterapia
18.
Clin Transl Oncol ; 25(10): 2812-2831, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37095425

RESUMO

Long non-coding RNAs (lncRNAs) are involved the progression of cancerous and non-cancerous disorders via different mechanism. FTX (five prime to xist) is an evolutionarily conserved lncRNA that is located upstream of XIST and regulates its expression. FTX participates in progression of various malignancy including gastric cancer, glioma, ovarian cancer, pancreatic cancer, and retinoblastoma. Also, FTX can be involved in the pathogenesis of non-cancerous disorders such as endometriosis and stroke. FTX acts as competitive endogenous RNA (ceRNA) and via sponging various miRNAs, including miR-186, miR-200a-3p, miR-215-3p, and miR-153-3p to regulate the expression of their downstream target. FTX by targeting various signaling pathways including Wnt/ß-catenin, PI3K/Akt, SOX4, PDK1/PKB/GSK-3ß, TGF-ß1, FOXA2, and PPARγ regulate molecular mechanism involved in various disorders. Dysregulation of FTX is associated with an increased risk of various disorders. Therefore, FTX and its downstream targets may be suitable biomarkers for the diagnosis and treatment of human malignancies. In this review, we summarized the emerging roles of FTX in human cancerous and non-cancerous cells.


Assuntos
MicroRNAs , RNA Longo não Codificante , Feminino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , MicroRNAs/genética , Transdução de Sinais/genética , Fatores de Transcrição SOXC/metabolismo
19.
Pathol Res Pract ; 245: 154380, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37043964

RESUMO

Long non-coding RNAs (lncRNAs) present pivotal roles in cancer tumorigenesis and progression. Recently, nuclear paraspeckle assembly transcript 1 (NEAT1) as a lncRNA has been shown to mediate cell proliferation, migration, and EMT in tumor cells. NEAT1 by targeting several miRNAs/mRNA axes could regulate cancer cell behavior. Therefore, NEAT1 may function as a potent biomarker for the prediction and treatment of some human cancers. In this review, we summarized various NEAT1-related signaling pathways that are critical in cancer initiation and progression.


Assuntos
MicroRNAs , RNA Longo não Codificante , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , RNA Longo não Codificante/metabolismo
20.
Neurochem Res ; 48(8): 2285-2308, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36943668

RESUMO

Parkinson's disease (PD) is a common age-related neurodegenerative disorder whose pathogenesis is not completely understood. Mitochondrial dysfunction and increased oxidative stress have been considered as major causes and central events responsible for the progressive degeneration of dopaminergic (DA) neurons in PD. Therefore, investigating mitochondrial disorders plays a role in understanding the pathogenesis of PD and can be an important therapeutic target for this disease. This study discusses the effect of environmental, genetic and biological factors on mitochondrial dysfunction and also focuses on the mitochondrial molecular mechanisms underlying neurodegeneration, and its possible therapeutic targets in PD, including reactive oxygen species generation, calcium overload, inflammasome activation, apoptosis, mitophagy, mitochondrial biogenesis, and mitochondrial dynamics. Other potential therapeutic strategies such as mitochondrial transfer/transplantation, targeting microRNAs, using stem cells, photobiomodulation, diet, and exercise were also discussed in this review, which may provide valuable insights into clinical aspects. A better understanding of the roles of mitochondria in the pathophysiology of PD may provide a rationale for designing novel therapeutic interventions in our fight against PD.


Assuntos
Doenças Mitocondriais , Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/patologia , Estresse Oxidativo/fisiologia , Neurônios Dopaminérgicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...